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Red (660 nm) and infrared (830 nm) low-level laser therapy
in skeletal muscle fatigue in humans: what is better?
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Abstract In animal and clinical trials low-level laser therapy
(LLLT) using red, infrared and mixed wavelengths has been
shown to delay the development of skeletal muscle fatigue.
However, the parameters employed in these studies do not
allow a conclusion as to which wavelength range is better in
delaying the development of skeletal muscle fatigue. With this
perspective in mind, we compared the effects of red and
infrared LLLT on skeletal muscle fatigue. A randomized
double-blind placebo-controlled crossover trial was performed
in ten healthy male volunteers. They were treated with active
red LLLT, active infrared LLLT (660 or 830 nm, 50 mW,
17.85 W/cm2, 100 s irradiation per point, 5 J, 1,785 J/cm2 at
each point irradiated, total 20 J irradiated per muscle) or an
identical placebo LLLT at four points of the biceps brachii
muscle for 3 min before exercise (voluntary isometric elbow
flexion for 60 s). The mean peak force was significantly
greater (p<0.05) following red (12.14%) and infrared LLLT
(14.49%) than following placebo LLLT, and the mean

average force was also significantly greater (p<0.05)
following red (13.09%) and infrared LLLT (13.24%) than
following placebo LLLT. There were no significant differ-
ences in mean average force or mean peak force between red
and infrared LLLT. We conclude that both red than infrared
LLLT are effective in delaying the development skeletal
muscle fatigue and in enhancement of skeletal muscle
performance. Further studies are needed to identify the
specific mechanisms through which each wavelength acts.
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Introduction

In strenuous physical activity, muscles typically show a
progressive decline in performance which largely recovers
after a period of rest. This reversible phenomenon is usually
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described as skeletal muscle fatigue. Muscle fatigue has
central and peripheral components, and studies of the role
of these components in the development of fatigue have
been conducted across the years [1]. Several factors
including type and intensity of exercise, muscle groups
involved and the biochemical environment affect fatigue
development [2]. Although skeletal muscle fatigue has been
exhaustively investigated, the mechanisms involved in its
development are still not fully understood.

The first clinical trial testing low-level laser therapy
(LLLT) in musculoskeletal pain, published in 1980, investi-
gated the effects of LLLT on rheumatoid arthritis [3]. Since
this first clinical trial was published, several positive effects
of LLLT have been identified in pathologies including
osteoarthritis [4], tendinopathies [5, 6], wounds [7, 8], back
pain [9], neck pain [10–12], peripheral nerve injuries [13]
and stroke [14]. Some of the main physiological effects
attributed to LLLT are related to soft tissue metabolism.
Across different pathologies, increased microcirculation
[15], enhanced ATP synthesis and stimulation of the
mitochondrial respiratory chain [16] and mitochondrial
function [17] have been observed after LLLT. Reductions
in the release of reactive oxygen species (ROS) and in
creatine phosphokinase activity, and increased production
of antioxidants and heat shock proteins have also been
found after LLLT [18, 19].

Several animal and human trials have shown that LLLT
with red and infrared wavelengths has modulatory effects
on inflammatory markers (PGE2, TNF-α, IL-1β, plasmin-
ogen activator), reduces the inflammatory process itself
(edema, hemorrhage, necrosis, neutrophil cell influx) and
modulates leukocyte activity (macrophages, lymphocytes,
neutrophils) [5, 20–25].

Skeletal muscle fatigue is a novel area of research in
phototherapy. In animal experiments, phototherapy with
655 nm red [26] and 904 nm infrared [27] wavelengths, and
clinical trials employing red [28], infrared [29, 30] and mixed
[31] wavelengths has been shown to delay the development
of skeletal muscle fatigue. However, the parameters of
application (such as power output, time of irradiation, doses,
etc.) employed in these studies do not allow a conclusion as
to whether red or infrared wavelengths produce better results
in delaying the development of skeletal muscle fatigue.

With this perspective in mind, we decided to compare
the effects of red and infrared LLLT (with the same
parameters of application for both wavelengths) on skeletal
muscle fatigue.

Materials and methods

The study was designed as a crossover randomized double-
blinded placebo-controlled trial. All subjects signed a

written declaration of informed consent and their rights
were protected. The volunteers were recruited from among
untrained healthy male physiotherapy students (n=10). The
protocol for this study was approved by the research ethics
committee.

Randomization and blinding procedures

The randomization procedure consisted of the simple
drawing of a card (A, B or C), which determined whether
active red LLLT, active infrared LLLT or placebo LLLT
should be given before the first exercise session. For the
second session, participants were crossed over to receive
one of the other treatments. For the third session,
participants were again crossed over to receive the remain-
ing treatment. The order of treatments is detailed in Table 1.

The code from the drawing was delivered to a technician
who preset the control unit accordingly to either an active
LLLT or placebo LLLT mode. The technician was also
instructed not to communicate the type of treatment given
to the participant, the therapist applying the laser treatment,
or the observers. Thus, the treatment allocation was
concealed from the participants, the therapist, and the
observers. Blinding of the participants and the therapist
was further maintained by the use of opaque goggles during
the LLLT procedures. The goggles also served to protect the
eyes from the LLLT radiation.

Inclusion/exclusion criteria

Healthy untrained male Caucasian physiotherapy students
aged between 19 and 27 years were included in the study.
Exclusion criteria consisted of any previous musculoskel-
etal injury to the shoulder, elbow or wrist region, regular
strength training (more than once per week) for the previous
2 months, and the use of any kind of nutritional supplement
or pharmacological agent. Ten subjects who met the
inclusion and exclusion criteria were included in the trial.

Procedures

To provide a standard testing condition for the elbow, we
used a Scott exercise bench with an inclination angle of 45°.

Table 1 Order of LLLT treatments

Card Session

1 2 3

A Red Infrared Placebo

B Infrared Placebo Red

C Placebo Red Infrared

454 Lasers Med Sci (2012) 27:453–458



Period of evaluation Care was taken to standardize the
exercise protocols and testing sessions. Exercises were
performed in a standardized sitting position in three
separate sessions 7 days apart. Therefore, each subject
performed all exercise sessions on the same day of the
week and at the same time of day. Subjects were instructed
not to change their daily activities during the 48 hours
before the exercise tests.

Fatigue protocol At the beginning of each exercise session
the subjects performed a series of muscle stretching
exercises involving all the major muscles of the nondom-
inant arm (two repetitions of 60 s for each muscle group),
finishing with the flexor muscles of the nondominant
elbow. Then, the subjects were seated on the Scott bench,
with their knees and hips flexed at 90°, and the nondominant
elbow positioned in flexion of 90°. Using a cable linked to a
force transducer (connected to a computer), subjects were
instructed to perform an isometric elbow flexion (with the
nondominant elbow flexed at 90°) for 60 s (Fig. 1). During
execution of the exercise protocol subjects received verbal
encouragement provided by one of the observers.

LLLT procedure The laser device was calibrated before and
after data acquisition, and the equipment showed the same
power output in both calibrations. The optical power was
measured using a Newport multifunction optical meter
model 1835C. The stability of the laser during irradiation
was measured by collecting 4% of the light as a partial
reflection. During each exercise session (7 days apart) the
subjects received a single treatment with active red LLLT,
active infrared LLLT or placebo LLLT (all using a the same
laser diode device: Thera Lase; DMC, São Carlos, SP,
Brazil). The treatment sequence was in accordance with the
randomization procedure. Red, infrared or placebo LLLT
was administered immediately after the stretching exercises
(exactly 3 min before the exercise fatigue test). The biceps
muscle belly of the nondominant arm was divided into four
parts to provide four irradiation points evenly distributed

along the ventral side of the muscle belly so that LLLT
radiation was delivered to most of the muscle belly.

LLLT irradiation was performed with the probe in direct
contact with the skin applying slight pressure, and held
stationary perpendicular to the skin. The dose and other
parameters for the LLLT (red, infrared and placebo) were
chosen based in previous studies developed by our research
group [28–30], and are summarized in Table 2. Immediately
after LLLT the subjects were repositioned and started the
exercise protocol. The time between LLLT and starting the
testing was 180 s.

Outcomes and statistical analysis

The outcomes analyzed were the mean peak force and the
mean average force achieved during the fatigue protocol
in three exercise sessions. Data are expressed as means
and their respective standard deviations. ANOVA with the
Tukey-Kramer post test was used to determine if there
were significant differences in peak force and average
force following treatment with the red, infrared and
placebo LLLT. All statistical analyses were performed
using GraphPad InStat version 3.00 for Windows (Graph-
Pad Software, San Diego CA). The significance level was
set at p<0.05.

Results

Ten untrained healthy male students met the inclusion
criteria and were included in study. Their average age was

Fig. 1 Exercise protocol being performed

Table 2 LLLT parameters

Parameter

Wavelength (nm)

Red 660±2

Infrared 830±2

Laser output frequency Continuous

Power output (mW) 50

Spot diameter (cm) 0.06

Spot size (cm2) 0.0028

Power density (W/cm2) 17.85

Energy per point (J) 5

Energy density per point (J/cm2) 1,785

Treatment time per point (s) 100

Number of points 4

Total energy delivered (J) 20

Application mode Probe held stationary in skin contact
at 90° with slight pressure
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22.30±2.26 years, their body weight was 75.40±6.54 kg
and their height was 176.90±7.19 cm.

Mean peak forces achieved in the exercise test were 23.83
±4.51 kgf following red LLLT, 24.33±4.88 kgf following
infrared LLLT and 21.25±4.93 kgf following placebo LLLT.
The peak force achieved following red LLLTwas significantly
higher than that achieved following placebo LLLT (p<0.05),
and similarly following infrared LLLT was significantly
higher than following placebo LLLT (p<0.01). However,
the peak force achieved following red LLLT was not
significantly different from that achieved following infrared
LLLT (p>0.05). The results are summarized in Fig. 2.

Mean average forces achieved in the exercise test were
15.46±1.98 kgf following red LLLT, 15.48±2.84 kgf
following infrared LLLT and 13.67±2.05 kgf following
placebo LLLT. The mean average force following red LLLT
was significantly higher than that following placebo LLLT
(p<0.05), and similarly following infrared LLLT was
significantly higher than following placebo LLLT (p<
0.05). As with peak force, there were also no significant
differences in mean average force between red and infrared
LLLT (p>0.05). The results are summarized in Fig. 3.

Discussion

In this trial we employed an isometric exercise protocol in
contrast to the repeated elbow flexions exercise protocol
employed in our previous human trials [28–31]. This is the
first time that we have compared the effects of LLLT at two
wavelengths on skeletal muscle fatigue in humans. Red
LLLT (660 nm) significantly increased peak force by
12.14% (p<0.05) and mean average force by 13.09% (p<
0.05) compared to placebo LLLT. We have previously
reported positive effects of red LLLT (655 nm) in delaying
the development of skeletal muscle fatigue during an elbow
flexion exercise protocol performed by male professional
volleyball players [28].

The peak force and the average force were significantly
greater (14.49% and 13.24%, respectively) following

infrared LLLT (830 nm) than following placebo LLLT (p<
0.01 and p<0.05, respectively). We have previously also
observed positive effects of infrared LLLT employing single
[29] and cluster probes [30] with different wavelengths
(830 nm and 810 nm, respectively) on skeletal muscle
fatigue in male volleyball players. Animal studies per-
formed by our research group have also demonstrated that
red LLLT [26] and infrared LLLT [27] can significantly
delay the development of skeletal muscle fatigue and increase
muscle performance. However, differences in LLLT parame-
ters used in previous studies do not allow an effective
comparison between red and infrared LLLT in human and
animal trials as mentioned above.

Surprisingly, no differences were observed in peak force
and average force between red and infrared LLLT. Laser
radiation at infrared wavelengths penetrates better through
human skin than red wavelengths [32], and for this reason
we expected that the results with infrared LLLT would be
better than with red LLLT in this trial. With this perspective,
further studies are warranted to investigate the specific
mechanisms by which each wavelength acts in delaying
skeletal muscle fatigue.

Oxidative stress and production of ROS play important
roles in the development of skeletal muscle fatigue.
However, the mechanisms through which ROS play a role
in the development of fatigue are not fully understood [1].
On the other hand, it is known that oxidative stress leads to
an impairment in contractile muscle function resulting in
muscle fatigue [33]. To counteract these effects, organisms
present antioxidant defenses involving, for example, the
action of such enzymes as superoxide dismutase (SOD) and
catalase (CAT) which are responsible for the dismutation of
the superoxide radical and hydrogen peroxide, respectively
[34]. Some studies have sought to determine whether LLLT
has effects on oxidative stress and ROS production in
skeletal muscles. Avni et al. [18] investigated the effects of
infrared LLLT (810 nm) in ischemic–reperfusion injury in
the gastrocnemius muscles of rats. They found that LLLT
protects skeletal muscles from degeneration following acute
ischemic–reperfusion injury. This was evident by a signif-
icantly (p<0.05) higher increase in creatine phosphokinase

Fig. 3 Mean average forces achieved in the exercise protocol (error
bars represents standard deviations). *p<0.05, vs. placebo

Fig. 2 Mean peak forces achieved in the exercise protocol (error bars
represents standard deviations). *p<0.05, **p<0.01, vs. placebo
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activity and a lower activity of acid phosphatase in the
LLLT-treated muscles. The content of antioxidants and heat
shock proteins were also higher in the LLLT-treated muscles
than in injured nonirradiated muscles. In another study [19],
infrared LLLT (904 nm) was tested in traumatic injury of
the gastrocnemius muscle in rats. LLLT reduced the
inflammatory response and blocked the effects of ROS
release, which led the authors to conclude that LLLT can
attenuate some of the negative consequences of inflamma-
tion and fibrosis and optimize muscle healing.

Disruption in mitochondrial function is one of mecha-
nisms involved in the development of skeletal muscle
fatigue [35]. Recently, Xu et al. [17] induced mitochondrial
dysfunction by electrical stimulation in cultured C2C12
cells, and irradiated the cells with infrared LLLT (810 nm)
at different doses. Mitochondrial function improved after
electrical stimulation in muscle cells with LLLT doses
between 0.33 to 8.22 J/cm2, and LLLT doses of 0.33 and
1.338 J/cm2 reversed the dysfunctional state induced by the
electrical stimulation. A similar effect could possibly have
contributed to the decrease in skeletal muscle fatigue
observed in the current study.

An improvement in mitochondrial activity and in ATP
synthesis could also be mechanisms by which LLLT affects
skeletal muscle fatigue. Silveira et al. [16] evaluated the
effects of 5 days treatment with infrared LLLT (904 nm)
after traumatic injury of the gastrocnemius muscle in rats.
The infrared LLLT significantly increased the activities of
complexes I, II, III, and IV and also of succinate
dehydrogenase. The authors concluded that treatment with
LLLT induced an increase in ATP synthesis, and that this
could have accelerated the muscle healing process. In
another recent study, for first time an in vivo intact skeletal
muscle was irradiated with the aim of testing the effects of
phototherapy on cytochrome oxidase [36]. Light emitting
diode therapy (LEDT) with a red wavelength (660 nm) was
used to irradiate the temporalis muscle in rats. The LEDT
significantly increased cytochrome oxidase activity in white,
red and intermediate fibers, which indicates enhancement in
the metabolic oxidative capacity of different types of muscle
fibers. These findings support the use of phototherapy to
enhance the aerobic potential of skeletal muscle.

In a recent study Joensen et al. [37] analyzed the thermal
effects of 810 nm (200 mW) and 904 nm (60 mW) infrared
LLLT at different doses (2, 6, 9 and 12 J) in subjects with
different skin colors (light, medium and dark). The infrared
LLLT did not significantly change skin temperature (less
than 2.0°C) in subjects with light and medium skin colors.
In the present study the subjects were Caucasian and we
used infrared LLLT with parameters similar to those tested
by Joensen et al. [37]. Thus we consider that the
performance enhancement observed in our study could not
have been due to thermal effects in the irradiated tissue.

The World Anti-Doping Code published in 2009 [38] by
World Anti-Doping Agency (WADA) states that a substance
or method can be considered as doping if two of the
following three criteria are fulfilled: (1) medical or other
scientific evidence, pharmacological effect or experience
that the substance or method, alone or in combination with
other substances or methods, has the potential to enhance or
enhances sport performance; (2) medical or other scientific
evidence, pharmacological effect or experience that the use
of the substance or method represents an actual or potential
health risk to the athlete; and (3) WADA's determination
that the use of the substance or method violates the spirit of
sport described in the introduction to the code. Therefore,
as phototherapy does not have side effects and is not a
potential health risk, and also does not violate the spirit of
sport described in the introduction to the code, we do not
think that phototherapy can be considered as doping when
used before exercise.

Conclusion

We conclude that both red and infrared LLLT are effective in
delaying the development of skeletal muscle fatigue and in
enhancing skeletal muscle performance. The optimal
parameters of application, as well as dose–response patterns
for several wavelengths still need to be identified in further
studies. Further studies are also needed to identify the
specific mechanisms by which each wavelength acts.
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